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Frequency doubling and memory effects in the spin Hall effect
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We predict that when an alternating voltage is applied to a semiconducting system with inhomogeneous
electron density in the direction perpendicular to main current flow, the spin Hall effect results in a transverse
voltage containing a double-frequency component. We also demonstrate that there is a phase shift between
applied and transverse-voltage oscillations, related to the general memristive behavior of semiconductor spin-
tronic systems. A different method to achieve frequency doubling based on the inverse spin Hall effect is also

discussed.
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I. INTRODUCTION

In optics, frequency doubling (also called second har-
monic generation) is obtained from nonlinear processes, in
which the frequency of photons interacting with a nonlinear
material is doubled. This phenomenon was first observed in
1961! and has found numerous applications in diverse areas
of science and engineering.> Physically, the fundamental
(pump) wave propagating through a crystal with x® nonlin-
earity (due to the lack of inversion symmetry) generates a
nonlinear polarization which oscillates with twice the funda-
mental frequency radiating an electromagnetic field with this
doubled frequency. In electronics, frequency doubling is a
fundamental operation for both analog and digital systems
which is however achieved via complex circuits made of
both passive and active circuit elements.>

As we demonstrate in this Brief Report, the possibility of
generating frequency doubling need not be limited to optical
processes in crystals or require complex circuits. In fact, we
show it can be realized via a completely different physical
mechanism using the spin Hall effect.* Our idea is to use a
material with inhomogeneous doping in the direction perpen-
dicular to the main current flow. As it was recently shown,’ a
dc voltage applied to such a system results in a transverse
voltage, similar to the Hall voltage, but with a different sym-
metry: the sign of the transverse voltage due to the spin Hall
effect does not depend on the polarity of the applied field.
Therefore, when an ac voltage is applied, the transverse volt-
age oscillations are similar in the positive and negative half-
periods of the applied voltage, which results in the frequency
doubling.

Moreover, the transverse voltage oscillations show hyster-
etic behavior at different frequencies. This result is reminis-
cent of the recent experimental demonstration of memory-
resistive (memristive) behavior in certain nanoscale
systems®’ and is consistent with our suggestion® that some
semiconductor spintronic systems are intrinsically memris-
tive systems.” When a time-dependent voltage is applied to
such systems, their response is delayed because the adjust-
ment of spin polarization to changing driving field requires
some time (due to spin relaxation and diffusion processes).
In other words, the electron spin polarization has a short-
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time memory on its previous state.® A unique feature of the
system investigated in this work is that effects of spin
memory manifest themselves in the voltage response, while
in the previous study® spin memory effects were predicted in
the current. Below, we study the frequency doubling and
manifestation of spin memristive effects both analytically
and numerically. This work reveals fundamental aspects of
the spin Hall effect that have not been explored yet, as well
as its possible use in electronic circuits.

Figure 1 shows a possible experimental setup which can
be used to observe frequency doubling by using the spin Hall
effect. An alternating voltage V(r)=V, cos(wt) of frequency
w and amplitude V|, is applied along a sample of semicon-
ductor material (we call this x direction). The electron den-
sity in the semiconductor is inhomogeneous in the direction
(y) perpendicular to main current flow. As the densities of
transverse (spin Hall) currents are stronger in the areas of
higher electron density, transverse charge currents at a
boundary between areas with different doping levels are not
compensated and charge accumulation, in addition to spin
accumulation, develops.5 Therefore, a transverse time-
dependent voltage V; develops between the sample bound-
aries y=0 and y=L, where L is the sample width. According
to our previous calculations’ and recent experimental
results,!” it is expected that the transverse voltage oscillation
amplitude is a nonlinear function of V.

To study this system, we employ a self-consistent two-
component drift-diffusion model'""'? which is appropriate for

FIG. 1. (Color online) Schematics of the experimental setup.
Inhomogeneous charge density is represented via a color gradient.
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the description of the extrinsic spin Hall effect, assuming that
the system is macroscopic in the x-y directions. The inhomo-
geneous charge-density profile n(y) is defined via an as-
signed positive background density profile N(y) (such as the
one shown in Fig. 1) which can be obtained in different ways
including inhomogeneous doping, variation of sample height
or gate-induced variation of electron density. Assuming ho-
mogeneous charge and current densities in the x direction
and homogeneous x component of the electric field in both x
and y directions, the set of equations to be solved is

on dj
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o PR 27#( 1= 1) (1)
Jyiy=0o1Ey +eD Vo) % Al () (2)
and
OE
—= —[N(y) n], (3)
dy  egg

where —e is the electron charge, n;(}) is the density of spin-up
(spin-down) electrons, Jy 1) is the current density, Ty is the
spin-relaxation time, oy )=en;)u is the spin-up (spin-
down) conductivity, u is the mobility, D is the diffusion
coefficient, € is the permittivity of the bulk, and vy is the
parameter describing deflection of spin-up (+) and spin-
down (—) electrons. The current density I .1() in x direction
is coupled to the homogeneous electric field E(z)
=E, cos(wt) in the same direction as 1, ;(|)=enuE(r). The
last term in Eq. (2) is responsible for the spin Hall effect.

Equation (1) is the continuity relation that takes into ac-
count spin relaxation and Eq. (3) is the Poisson equation.
Equation (2) is the expression for the current density in y
direction which includes drift, diffusion, and spin Hall effect
components. We assume here for simplicity that D, u, 7
and 7 are equal for spin-up and spin-down electrons.'3 In our
model, as it follows from Eq. (2), the spin Hall correction to
spin-up (spin-down) current densities [the last term in Eq.
(2)] is simply proportional to the local spin-up (spin-down)
density. All information about the microscopic mechanisms
for the spin Hall effect is therefore lumped in the parameter
v.

Combining Egs. (1) and (2) for different spin components
we can get the following equations for the electron density
n=n;+n and the spin-density imbalance P=n;-n:
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II. ANALYTICAL SOLUTION

Before solving Egs. (3)—(5) numerically, an instructive
analytical result can be obtained in the specific case of ex-
ponential doping profile N(y)=A exp(ay), with a a positive
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constant. At small values of E,, we search for a solution in
the form n=ny+on, E,=E,(+E,, P=Py+0P. Setting E,
=0, the leading terms in the above expansions can be easily
obtained (see also Ref. 5): ng=N(y)=Ae®, Ey=—%, P,=0.
Next, using Eq. (5) and neglecting the term ~ énE,, we ob-
tain

YyAauE,| 1
SP = A o i —cos(wt) + w sin(wr) |. (6)
1 +ol B
—+w
2.

sf
Combining Egs. (3), (4), and (6), integrating in y and ne-
glecting the term proportional to dndE, (this approximation
neglects small-amplitude higher harmonics terms), we obtain
the following equation for JE,

JSE, @y ISE, #SE
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Equation (7) already demonstrates that the driving term for
OE, involves a doubled frequency. In order to further pro-
ceed, let us consider a sample of a finite width L, in which
doping level variations are not dramatic. Then, in the first
term on the right-hand side of Eq. (7), we can write approxi-
mately e® ~e®", where 0< y*<L. This approximation al-
lows us to find

SE,=[C, + (3 + C3 cosQwt — 6)]e, (8)
where 6, defined as tan 8=C,/Cj3, is a phase shift, and
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Finally, the transverse voltage is given by

al

L
——— 1
Vp=— f SE,dy=[C, + \JC% + c§ cos(Qwt — )]
0

(12)

Equation (12) demonstrates that there are two contributions
to the transverse voltage V;: a shift term (proportional to C)
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FIG. 2. (Color online) Frequency doubling in transverse voltage
oscillations calculated at »=10% Hz. A phase shift between the ap-
plied field E(r) (gray solid line) and the transverse field V; (red
solid line) oscillations is clearly seen. Inset: the transverse voltage
oscillation amplitude as a function of the applied voltage frequency
(the dots represent calculated values of AV, the solid line is a fit to
these points). The plots were obtained using the parameter values
w=8500 cm?/(V's), D=55 cm?/s, £=12.4, 7,=10 ns, y=107"
(see Ref. 15), E4=100 V/cm and the background density profile
N=10" exp(2y/L) cm™3, where L=100 um is the sample width
and 0=y=L. The analytical curve (black dashed line) was ob-
tained at y*=L/1.65.

and a double-frequency phase-shifted oscillation term (pro-
portional to \J’C§+C§). We have found that Eq. (12) is in
excellent agreement with results of our numerical calcula-
tions (given below) with the only one adjustable parameter
y*. For a particular set of parameters used below, a perfect
match between analytical and numerical calculations was ob-
tained at y*=L/1.65.

III. NUMERICAL SOLUTION

Equations (3)—(5) can be solved numerically for any rea-
sonable form of N(y). We choose an exponential profile for
its simplicity, the possibility to realize it in practice and for
the purpose of comparison with the above analytical results.
We solve these equations iteratively, starting with the elec-
tron density n(y) close to N(y) and P(y) close to zero and
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recalculating E,(y) at each time step.!* At each time step, the
transverse voltage is calculated as a change of the electro-
static potential across the sample.

Selected results of our numerical calculations are pre-
sented in Figs. 2 and 3. In particular, Fig. 2 demonstrates that
the transverse voltage oscillations are indeed of a doubled-
frequency character and phase-shifted with respect to the ap-
plied voltage. Another important feature shown in Fig. 2 is
the excellent agreement between our analytical and numeri-
cal results. This agreement was obtained by an appropriate
choice of the parameter y* defined after Eq. (7). We observed
that y* slightly depends on E and w, and, once y* is selected,
the numerical and analytical solutions are in a good agree-
ment in a wide range of excitation voltage parameters.

Multiple signatures of spin memristive behavior are
clearly seen in Figs. 2 and 3 including a constant shift and
phase shift in V; depicted in Fig. 2, frequency dependence of
the transverse voltage oscillation amplitude shown in the in-
set of Fig. 2, and hysteresis behavior plotted in Fig. 3. All
these features have a common origin: the adjustment of elec-
tron spin polarization to changing voltage takes some time.
In particular, at low frequencies, we observe a small hyster-
esis in Fig. 3(a) because when the applied electric field is
changed slowly (on V; equilibration time scale), at each mo-
ment of time 7 the instantaneous V is very close to its equi-
librium value irrespective of the driving field E(r). At high
frequencies, the situation is opposite: when the applied elec-
tric field changes very fast, the electrons “experience” an
average (close to zero) applied electric field, resulting in a
significantly reduced transverse voltage oscillations ampli-
tude.

We also note that at those moments of time when E(t)
=0, the transverse voltage is very close to, but not exactly,
zero. This small deviation from an ideal memristive
behavior® (predicting V;=0 when E(f)=0 and related to the
absence of energy storage) should be a common feature of
solid-state memristive systems operating at frequencies com-
parable to the inverse characteristic time of charge equilibra-
tion processes.

We conclude by noting that another way to realize the
frequency doubling discussed in this paper can be realized by
sandwiching a nonmagnetic homogeneous material between
two ferromagnets (see schematic in Fig. 4). In this case one
can employ the inverse spin Hall effect, in which the spin
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FIG. 3. (Color online) The transverse voltage as a function of applied electric field of (a) lower and (b) higher frequencies.
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FIG. 4. (Color online) Frequency doubling with the inverse spin
Hall effect where a nonmagnetic material (in the middle, green) is
sandwiched between two ferromagnetic leads (at the ends, blue).
The transverse voltage oscillation frequency depends on the relative
orientation of the magnetization of the ferromagnetic contacts. The
frequency is doubled when the direction of magnetization of ferro-
magnetic contacts is antiparallel. When the direction of magnetiza-
tion of the ferromagnetic contacts is parallel, the transverse voltage
frequency is equal to the applied voltage frequency. The oscillation
amplitudes are not to scale.

current flowing in the nonmagnetic material induces trans-
verse charge current, and thus causes charge accum-
ulation.'®2 Since the electromotive force in the inverse spin
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Hall effect is?® ~J¢X &, where Jg is the spin current along
the sample and ¢ is the spin polarization, the simultaneous
change of the current direction and its spin polarization, that
occurs at antiparallel magnetization of ferromagnetic con-
tacts, does not change the electromotive force polarity lead-
ing to transverse voltage oscillations with a doubled fre-
quency. On the other hand, for parallel orientation of the spin
polarization of the ferromagnetic contacts, the direction of
spin current changes within each voltage cycle but not the
direction of spin polarization. This thus results in a trans-
verse voltage with the same frequency as the longitudinal
one, albeit with lower amplitude (see Fig. 4). However, since
spin injection allows for much higher levels of electron spin
polarization (of the order of several tens of percents) com-
pared to the spin Hall effect (normally, less than one per-
cent), we expect the amplitude of V; oscillations to be larger
in the inverse spin Hall effect. An external magnetic field can
also be used in such experiments as an additional control
parameter.

Finally, the phenomena we predict can be easily verified
experimentally. They provide additional insight on the spin
Hall effect and may find useful applications in electronics.
We thus hope our work will motivate experiments in this
direction.
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